Biosystems & Biorobotics

Volume 22

Series editor
Eugenio Guglielmelli, Campus Bio-Medico University of Rome, Rome, Italy
e-mail: e.guglielmelli@unicampus.it

Editorial Board
Dino Accoto, Campus Bio-Medico University of Rome, Rome, Italy
Sunil Agrawal, University of Delaware, Newark, DE, USA
Fabio Babiloni, Sapienza University of Rome, Rome, Italy
Jose M. Carmena, University of California, Berkeley, CA, USA
Maria Chiara Carrozza, Scuola Superiore Sant’Anna, Pisa, Italy
Paolo Dario, Scuola Superiore Sant’Anna, Pisa, Italy
Arturo Forner-Cordero, University of Sao Paulo, Sao Paulo, Brazil
Masakatsu G. Fujie, Waseda University, Tokyo, Japan
Nicolas Garcia, Miguel Hernández University of Elche, Elche, Spain
Neville Hogan, Massachusetts Institute of Technology, Cambridge, MA, USA
Hermano Igo Krebs, Massachusetts Institute of Technology, Cambridge, MA, USA
Dirk Lefeber, Universiteit Brussel, Brussels, Belgium
Rui Loureiro, Middlesex University, London, UK
Marko Munih, University of Ljubljana, Ljubljana, Slovenia
Paolo M. Rossini, University Cattolica del Sacro Cuore, Rome, Italy
Atsuo Takanishi, Waseda University, Tokyo, Japan
Russell H. Taylor, The Johns Hopkins University, Baltimore, MA, USA
David A. Weitz, Harvard University, Cambridge, MA, USA
Loredana Zollo, Campus Bio-Medico University of Rome, Rome, Italy
Aims & Scope

Biosystems & Biorobotics publishes the latest research developments in three main areas: 1) understanding biological systems from a bioengineering point of view, i.e. the study of biosystems by exploiting engineering methods and tools to unveil their functioning principles and unrivalled performance; 2) design and development of biologically inspired machines and systems to be used for different purposes and in a variety of application contexts. The series welcomes contributions on novel design approaches, methods and tools as well as case studies on specific bioinspired systems; 3) design and developments of nano-, micro-, macrodevices and systems for biomedical applications, i.e. technologies that can improve modern healthcare and welfare by enabling novel solutions for prevention, diagnosis, surgery, prosthetics, rehabilitation and independent living.

On one side, the series focuses on recent methods and technologies which allow multiscale, multi-physics, high-resolution analysis and modeling of biological systems. A special emphasis on this side is given to the use of mechatronic and robotic systems as a tool for basic research in biology. On the other side, the series authoritatively reports on current theoretical and experimental challenges and developments related to the “biomechatronic” design of novel biorobotic machines. A special emphasis on this side is given to human-machine interaction and interfacing, and also to the ethical and social implications of this emerging research area, as key challenges for the acceptability and sustainability of biorobotics technology.

The main target of the series are engineers interested in biology and medicine, and specifically bioengineers and bioroboticists. Volume published in the series comprise monographs, edited volumes, lecture notes, as well as selected conference proceedings and PhD theses. The series also publishes books purposely devoted to support education in bioengineering, biomedical engineering, biomechatronics and biorobotics at graduate and post-graduate levels.

About the Cover

The cover of the book series Biosystems & Biorobotics features a robotic hand prosthesis. This looks like a natural hand and is ready to be implanted on a human amputee to help them recover their physical capabilities. This picture was chosen to represent a variety of concepts and disciplines: from the understanding of biological systems to biomechatronics, bioinspiration and biomimetics; and from the concept of human-robot and human-machine interaction to the use of robots and, more generally, of engineering techniques for biological research and in healthcare. The picture also points to the social impact of bioengineering research and to its potential for improving human health and the quality of life of all individuals, including those with special needs. The picture was taken during the LIFEHAND experimental trials run at Università Campus Bio-Medico of Rome (Italy) in 2008. The LIFEHAND project tested the ability of an amputee patient to control the Cyberhand, a robotic prosthesis developed at Scuola Superiore Sant’Anna in Pisa (Italy), using the tf-LIFE electrodes developed at the Fraunhofer Institute for Biomedical Engineering (IBMT, Germany), which were implanted in the patient’s arm. The implanted tf-LIFE electrodes were shown to enable bidirectional communication (from brain to hand and vice versa) between the brain and the Cyberhand. As a result, the patient was able to control complex movements of the prosthesis, while receiving sensory feedback in the form of direct neurostimulation. For more information please visit http://www.biorobotics.it or contact the Series Editor.

More information about this series at http://www.springer.com/series/10421
Wearable Robotics: Challenges and Trends

Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, October 16–20, 2018, Pisa, Italy
Contents

Wearable Sensors for Robotic Exoskeletons

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Sensing and Control with FMG Sensors for Exoskeleton</td>
<td>3</td>
</tr>
<tr>
<td>Physical Assistance</td>
<td></td>
</tr>
<tr>
<td>Muhammad R. U. Islam, Kun Xu, and Shaoping Bai</td>
<td></td>
</tr>
<tr>
<td>Force Localization Estimation Using a Designed Soft Tactile Sensor</td>
<td>8</td>
</tr>
<tr>
<td>Merve Acer and Adnan Furkan Yıldız</td>
<td></td>
</tr>
<tr>
<td>EIT-Based Tactile Sensing Patches for Rehabilitation and Human Machine Interaction</td>
<td>13</td>
</tr>
<tr>
<td>Stefania Russo, Nicola Carbonaro, and Alessandro Tognetti</td>
<td></td>
</tr>
<tr>
<td>Synthesis and Optimization Considerations for a Knee Orthosis Based on a Watt’s Six-Bar Linkage</td>
<td>18</td>
</tr>
<tr>
<td>Evagoras Xydas, Banu Abdikadirova, and Kostas Konstantinos</td>
<td></td>
</tr>
<tr>
<td>Wearable Sensory Apparatus Performance While Using Inertial Measurement Units</td>
<td>23</td>
</tr>
<tr>
<td>Grega Logar, Zoran Ivanic, and Marko Munih</td>
<td></td>
</tr>
<tr>
<td>WeFiTS: Wearable Fingertip Tactile Sensor</td>
<td>28</td>
</tr>
<tr>
<td>Elif Hocaoglu</td>
<td></td>
</tr>
</tbody>
</table>

Soft Wearable Robots

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterisation of Pressure Distribution at the Interface of a Soft Exosuit: Towards a More Comfortable Wear</td>
<td>35</td>
</tr>
<tr>
<td>Michele Xiloyannis, Domenico Chiaradia, Antonio Frisoli, and Lorenzo Masia</td>
<td></td>
</tr>
<tr>
<td>Realizing Soft High Torque Actuators for Complete Assistance</td>
<td></td>
</tr>
<tr>
<td>Wearable Robots</td>
<td>39</td>
</tr>
<tr>
<td>Allan J. Veale, Kyrian Staman, and Herman van der Kooij</td>
<td></td>
</tr>
</tbody>
</table>
Valerie Power, Adam de Eyto, Bernard Hartigan, Jesús Ortiz, and Leonard W. O’Sullivan

Preliminary Experimental Study on Variable Stiffness Structures Based on Textile Jamming for Wearable Robotics 49
Ali Sadeghi, Alessio Mondini, and Barbara Mazzolai

Towards Embroidered Sensing Technologies for a Lower Limb Soft Exoskeleton ... 53
M. Totaro, E. Bottenberg, R. Groeneveld, L. Erkens, A. Mondini, G. J. Brinks, and L. Beccai

Recent Results from Evaluation of Soft Wearable Robots in Clinical Populations ... 58
Conor Walsh

Subject-Centered Based Approaches for Controlling Wearable Robots

Toward an Affordable Multi-Modal Motion Capture System Framework for Human Kinematics and Kinetics Assessment 65
Randa Mallat, Vincent Bonnet, Mohamad Khalil, and Samer Mohammed

High Power Series Elastic Actuator Development for Torque-Controlled Exoskeletons ... 70
Mehmet C. Yildirim, Ahmet Talha Kansizoglu, Polat Sendur, and Barkan Ugurlu

Investigation on Variable Impedance Control for Modulating Assistance in Walking Strategies with the AUTONOMYO Exoskeleton 75
A. Ortlieb, P. Lichard, F. Dzeladini, R. Baud, H. Bleuler, A. Ijspeert, and M. Bouri

Improving Usability of Rehabilitation Robots: Hand Module Evaluation of the ARMin Exoskeleton ... 80
Fabian Just, Daniel Gunz, Jaime Duarte, Davide Simonetti, Robert Riener, and Georg Rauter

Lower Limb Exoskeletons, from Specifications to Design 85
M. Bouri
Robotic and Neuroprosthetic Balance Management Approaches for Walking Assistance

Novel Perturbation-Based Approaches Using Pelvis Exoskeleton Robot in Gait and Balance Training After Stroke 91
Zlatko Matjačić, Matjaž Zadravec, Nataša Bizovičar, Nika Goljar, and Andrej Olenšek

Balance During Bodyweight Supported and Robot-Assisted Walking ... 96
Eva Swinnen, Jean-Pierre Baeyens, Nina Lefeber, Emma De Keersmaecker, Stieven Henderix, Marc Michielsen, and Eric Kerckhofs

Maintaining Gait Balance After Perturbations to the Leg: Kinematic and Electromyographic Patterns 100
Eleonora Croci, Roger Gassert, and Camila Shirota

A New Sensory Feedback System for Lower-Limb Amputees: Assessment of Discrete Vibrotactile Stimuli Perception During Walking ... 105
Mariangela Filosa, Ilaria Cesini, Elena Martini, Giacomo Spigler, Nicola Vitiello, Calogero Oddo, and Simona Crea

Fast Online Decoding of Motor Tasks with Single sEMG Electrode in Lower Limb Amputees ... 110
Federica Barberi, Federica Aprigliano, Emanuele Gruppioni, Angelo Davalli, Rinaldo Sacchetti, Alberto Mazzoni, and Silvestro Micera

A Wearable Haptic Feedback System for Assisting Lower-Limb Amputees in Multiple Locomotion Tasks 115
Ilaria Cesini, Giacomo Spigler, Sahana Prasanna, Domitilla Taxis, Filippo Dell’Agnello, Elena Martini, Simona Crea, Nicola Vitiello, Alberto Mazzoni, and Calogero Maria Oddo

Benchmarking Wearable Robots

COVR – Towards Simplified Evaluation and Validation of Collaborative Robotics Applications Across a Wide Range of Domains Based on Robot Safety Skills 123
Jule Bessler, Leendert Schaake, Catherine Bidard, Jaap H. Buurke, Aske E. B. Lassen, Kurt Nielsen, José Saenz, and Federico Vicentini

Monitoring Upper Limbs During Exoskeleton-Assisted Gait Outdoors ... 127
Matteo Lancini, Simone Pasinetti, Valeria Montini, and Giovanna Sansoni
What Do People Expect from Benchmarking of Bipedal Robots? Preliminary Results of the EUROBENCH Survey 132
R. Conti, F. Giovacchini, L. Saccare, N. Vitiello, J. L. Pons, and D. Torricelli

Modeling Human-Exoskeleton Interaction: Preliminary Results 137
M. C. Sánchez-Villamañán, D. Torricelli, and J. L. Pons

Human-in-the-Loop Bayesian Optimization of a Tethered Soft Exosuit for Assisting Hip Extension ... 142
Myunghee Kim, Ye Ding, Charles Liu, Jinsoo Kim, Sangjun Lee, Nikolaos Karavas, Conor Walsh, and Scott Kuindersma

A Review of Performance Metrics for Lower Limb Wearable Robots: Preliminary Results ... 147
D. Torricelli, D. Pinto-Fernandez, R. Conti, N. Vitiello, and J. L. Pons

Flexible and Transparent Technologies for Innovative Wearable Robotics
Development of Polymer Optical Fiber Sensors for Lower Limb Exoskeletons Instrumentation .. 155
Arnaldo G. Leal-Junior, Anselmo Frizera, Carlos Marques, and Maria José Pontes

T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance ... 160
Miguel Manchola, Daya Serrano, Daniel Gómez, Felipe Ballen, Diego Casas, Marcela Munera, and Carlos A. Cifuentes

A Series Elastic Dual-Motor Actuator Concept for Wearable Robotics .. 165
Tom Verstraten, Raphaël Furnémont, Pablo López-García, Stein Crispel, Bram Vanderborght, and Dirk Lefeber

Towards Design Guidelines for Physical Interfaces on Industrial Exoskeletons: Overview on Evaluation Metrics 170
M. Sposito, S. Toxiri, D. G. Caldwell, J. Ortiz, and E. De Momi

Design and Control of a Transparent Lower Limb Exoskeleton 175
Wilian M. dos Santos and Adriano A. G. Siqueira

Development and Testing of Full-Body Exoskeleton AXO-SUIT for Physical Assistance of the Elderly 180
S. Bai, S. Christensen, M. Islam, S. Rafique, N. Masud, P. Mattsson, L. O’Sullivan, and V. Power
Wearable Robotics for Rehabilitation and Assistance in Latin America

Artificial Vision Algorithm for Object Manipulation with a Robotic Arm in a Semi-Autonomous Brain-Computer Interface 187

Design Specifications and Usability Issues Considered in the User Centered Design of a Wearable Exoskeleton for Upper Limb of Children with Spastic Cerebral Palsy 192
Alberto I. Perez-Sanpablo, Catherine Disselhorst-Klug, Juan M. Ibarra Zannatha, Josefina Gutierrez-Martínez, Alicia Meneses Peñaloza, Elisa Romero-Avila, and Santos M. Orozco-Soto

Stance Control with the Active Knee Orthosis ALLOR for Post-Stroke Patients During Walking .. 196
A. C. Villa-Parra, J. Lima, D. Delisle-Rodriguez, A. Frizera-Neto, and T. Bastos

Gait Phase Detection for Lower Limb Prosthetic Devices 201
Pablo E. Caicedo, Carlos F. Rengifo, Luis E. Rodríguez, and Wilson A. Sierra

Lower Limb Exoskeletons in Latin-Amercia 206
Antonio J. del-Ama, Jose M. Azorín, José L. Pons, Anselmo Frizera, Thomaz Rodrigues, Ángel Gil-Agudo, Javier O. Roa, and Juan C. Moreno

Development of a Visual-Inertial Motion Tracking System for Muscular-Effort/Angular Joint-Position Relation to Obtain a Quantifiable Variable of Spasticity 210
S. M. Orozco-Soto, A. I. Pérez-Sanpablo, P. Vera-Bustamante, and J. M. Ibarra-Zannatha

Wearable Robotic Solutions for Factories of the Future
Towards Standard Specifications for Back-Support Exoskeletons 219
Stefano Toxiri, Matteo Sposito, Maria Lazzaroni, Lorenza Mancini, Massimo Di Pardo, Darwin G. Caldwell, and Jesús Ortiz

Lift Movement Detection with a QDA Classifier for an Active Hip Exoskeleton .. 224
Baojun Chen, Lorenzo Grazzi, Francesco Lanotte, Nicola Vitiello, and Simona Crea

The Effect of a Passive Trunk Exoskeleton on Functional Performance and Metabolic Costs .. 229
S. J. Baltrusch, J. H. van Dieën, S. M. Bruijn, A. S. Koopman, C. A. M. van Bennekem, and H. Houdijk
Industrial Wearable Exoskeletons and Exosuits Assessment Process ... 234
Jawad Masood, Angel Dacal-Nieto, Victor Alonso-Ramos,
M. Isabel Fontano, Anthony Voilqué, and Julia Bou

Trunk Range of Motion in the Sagittal Plane with and Without
a Flexible Back Support Exoskeleton 239
Matthias B. Näf, Axel S. Koopman, Carlos Rodriguez-Guerrero,
Bram Vanderborght, and Dirk Lefeber

Real-Time Control of Quasi-Active Hip Exoskeleton
Based on Gaussian Mixture Model Approach 244
Mišel Cevzar, Tadej Petrič, Marko Jamšek, and Jan Babič

Optimizing Design Characteristics of Passive and Active Spinal
Exoskeletons for Challenging Work Tasks 249
Monika Harant, Manish Sreenivasa, Matthew Millard, Nejc Šarabon,
and Katja Mombaur

Human Modeling and Simulation for Neurorehabilitation Engineering

Calibration and Validation of a Skeletal Multibody Model
for Leg-Orthosis Contact Force Estimation 257
Francisco Mouzo, Urbano Lugris, Javier Cuadrado,
Josep M. Font-Llagunes, and Francisco J. Alonso

A Continuous and Differentiable Mechanical Model of Muscle
Force and Impedance ... 262
Matthew Millard, David Franklin, and Walter Herzog

SimCP: A Simulation Platform to Predict Gait Performance
Following Orthopedic Intervention in Children with Cerebral Palsy ... 267
Friedl De Groote, Lorenzo Pitto, Hans Kainz, Antoine Falisse,
Eirini Papageorgiou, Mariska Wesseling, Sam Van Rossom,
Kaat Desloovere, and Ilse Jonkers

Bio-inspired Walking: From Humanoids to Assistive Devices 271
Renaud Ronsse

Design of a Hand Exoskeleton for Use with Upper
Limbs Exoskeletons ... 276
Peter Walker Ferguson, Brando Dimapasoc, Yang Shen, and Jacob Rosen

A Real-time Graphic Interface for the Monitoring of the Human
Joint Overloadings with Application to Assistive Exoskeletons 281
Marta Lorenzini, Wansoo Kim, Elena De Momi, and Arash Ajoudani
Smart Human-Machine Systems for Lower-Limb Assistance and Rehabilitation After Paralysis

Study of Algorithms Classifiers for an Offline BMI Based on Motor Imagery of Pedaling .. 289
Mario Ortiz, Marisol Rodriguez-Ugarte, Eduardo Iáñez, and José M. Azorín

Exoskeleton Control for Post-stroke Gait Training of a Paretic Limb Based on Extraction of the Contralateral Gait Phase 294
Gabriel Aguirre-Ollinger, Ashwin Narayan, Hsiao-Ju Cheng, and Haoyong Yu

Design of a Passive Exoskeleton to Support Sit-to-Stand Movement: A 2D Model for the Dynamic Analysis of Motion 299
Luis P. Quinto, Sérgio B. Gonçalves, and Miguel T. Silva

Walking Assistance of Subjects with Spinal Cord Injury with an Ankle Exoskeleton and Neuromuscular Controller 304
M. Arquilla, I. Pisotta, F. Tamburella, N. L. Tagliamonte, M. Masciullo, A. R. Wu, C. Meiijneke, H. van der Kooij, A. J. Ijspeert, and M. Molinari

Center of Mass and Postural Adaptations During Robotic Exoskeleton-Assisted Walking for Individuals with Spinal Cord Injury .. 309
Arvind Ramanujam, Kamyar Momeni, Syed R. Husain, Jonathan Augustine, Erica Garbarini, Peter Barrance, Ann M. Spungen, Pierre K. Asselin, Steven Knezevic, and Gail F. Forrest

Exoskeleton Controller and Design Considerations: Effect on Training Response for Persons with SCI 314

Biorobotics Approaches to Understand and Restore Human Balance

Integrating Posture Control in Assistive Robotic Devices to Support Standing Balance ... 321
T. Mergner and V. Lippi

A Computational Framework for Muscle-Level Control of Bi-lateral Robotic Ankle Exoskeletons 325
Guillaume Durandau, Herman van der Kooij, and Massimo Sartori

A Conductive Fabric Based Smart Insole to Measure the Foot Pressure Distribution with High Resolution 329
Xinyao Hu, Chuang Luo, Dongsheng Peng, and Xingda Qu
Training Balance Recovery in People with Incomplete SCI Wearing a Wearable Exoskeleton .. 334

Modular Composition of Human Gaits Through Locomotor Subfunctions and Sensor-Motor-Maps .. 339
Andre Seyfarth, Maziar A. Sharbafi, Guoping Zhao, and Christian Schumacher

Model-Based Posture Control for a Torque-Controlled Humanoid Robot .. 344
Maximo A. Roa, Bernd Henze, and Christian Ott

Exoskeleton Research in Europe

XoSoft - Iterative Design of a Modular Soft Lower Limb Exoskeleton .. 351
Jesús Ortiz, Christian Di Natali, and Darwin G. Caldwell

Preliminary Usability and Efficacy Tests in Neurological Patients of an Exoskeleton for Upper-Limb Weight Support 356

Symbitron: Symbiotic Man-Machine Interactions in Wearable Exoskeletons to Enhance Mobility for Paraplegics 361
Herman van der Kooij, Edwin van Asseldonk, Gijs van Oort, Victor Sluiter, Amber Emmens, Heide Witteveen, Nevio Luigi Tagliamonte, Federica Tamburella, Iolanda Pisotta, Marcella Masciullo, Matteo Arquilla, Marco Molinari, Amy Wu, Auke Ijspeert, Florin Florin Dzeladini, Freygardur Thorsteinsson, Arash Arami, Etienne Burdet, Hsien-Yung Huang, Wouter Gregoor, and Cor Meijneke

Beyond Robo-Mate: Towards the Next Generation of Industrial Exoskeletons in Europe .. 365
Jesús Ortiz, Stefano Toxiri, and Darwin G. Caldwell

The SoftPro Project: Synergy-Based Open-Source Technologies for Prosthetics and Rehabilitation 370
Cristina Piazza, Manuel G. Catalano, Matteo Bianchi, Emiliano Ricciardi, Domenico Prattichizzo, Sami Haddad, Andreas R. Luft, Olivier Lambercy, Roger Gassert, Eike Jakubowitz, Herman Van Der Kooij, Frederick Tonis, Fabio Bonomo, Benjamin de Jonge, Tomas Ward, Kristin D. Zhao, Marco Santello, and Antonio Bicchi
EUROBENCH: Preparing Robots for the Real World 375
D. Torricelli and J. L. Pons

Poster Session

Actuation Requirements for Assistive Exoskeletons: Exploiting
Knowledge of Task Dynamics .. 381
Stefano Toxiri, Andrea Calanca, Tommaso Poliero, Darwin G. Caldwell,
and Jesús Ortiz

Grasping Detection with Force Sensor Embedded
in a Hand Exoskeleton ... 386
Jorge A. Diez, José M. Catalán, Andrea Blanco, Juan Barios,
Santiago Ezquerro, Arturo Bertomeu-Motos, and Nicolás García-Aracil

XoSoft Connected Monitor (XCM) Unsupervised Monitoring
and Feedback in Soft Exoskeletons of 3D Kinematics, Kinetics,
Behavioral Context and Control System Status 391
Chris T. M. Baten, Wiebe de Vries, Leendert Schaake, Juryt Witteveen,
Daniel Scherly, Konrad Stadler, Andres Hidalgo Sanchez, Eduardo Rocon,
Danny Plass-Oude Bos, and Jeroen Linssen

Tactile and Proximity Servoing by a Multi-modal Sensory
Soft Hand ... 396
John Nassour and Fred H. Hamker

Improved Fabrication of Soft Robotic Pad for Wearable
Assistive Devices ... 401
Yi Sun, Aaron Jing Yuan Goh, Miao Li, Hui Feng, Jin Huat Low,
Marcelo H. Ang Jr., and Raye Chen Hua Yeow

The Exosleeve: A Soft Robotic Exoskeleton for Assisting
in Activities of Daily Living ... 406
Rainier F. Natividad, Sin Wai Hong, Tiana M. Miller-Jackson,
and Chen-Hua Yeow

Exoskeleton with Soft Actuation and Haptic Interface 410
Ivanka Veneva, Dimitar Chakarov, Michail Tsveov, and Pavel Venev

Comparison of a Soft Exosuit and a Rigid Exoskeleton
in an Assistive Task .. 415
Domenico Chiaradia, Michele Xiloyannis, Massimiliano Solazzi,
Lorenzo Masia, and Antonio Frisoli

Design of Soft Exosuit for Elbow Assistance Using Butyl Rubber
Tubes and Textile ... 420
John Nassour, Sidhdharthkumar Vaghani, and Fred H. Hamker
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing Body Thickness of Watchband-Type Soft Pneumatic Actuator for Feedback of Prosthesis Grasping Force</td>
<td>425</td>
</tr>
<tr>
<td>Masashi Sekine, Kazuya Kawamura, and Wenwei Yu</td>
<td></td>
</tr>
<tr>
<td>The Effect of Negative Damping at the Hip Joint During Level Walking: A Preliminary Testing</td>
<td>430</td>
</tr>
<tr>
<td>Jongwon Lee, Juwhan Bae, Chilyong Kwon, Seokjin Hwang, and Gyoosuk Kim</td>
<td></td>
</tr>
<tr>
<td>Overview and Challenges for Controlling Back-Support Exoskeletons</td>
<td>435</td>
</tr>
<tr>
<td>Maria Lazzaroni, Stefano Toxiri, Darwin G. Caldwell, Elena De Momi,</td>
<td></td>
</tr>
<tr>
<td>and Jesús Ortiz</td>
<td></td>
</tr>
<tr>
<td>Assessment of a Hand Exoskeleton Control Strategy Based on User’s Intentions Classification Starting from Surface EMG Signals</td>
<td>440</td>
</tr>
<tr>
<td>Nicola Secciani, Matteo Bianchi, Alessandro Ridolfi, Federica Vannetti, and Benedetto Allotta</td>
<td></td>
</tr>
<tr>
<td>Contribution of a Knee Orthosis to Walking</td>
<td>445</td>
</tr>
<tr>
<td>O. Bordron, C. Huneau, É. Le Carpentier, and Y. Aoustin</td>
<td></td>
</tr>
<tr>
<td>Human Trunk Stabilization with Hip Exoskeleton for Enhanced Postural Control</td>
<td>450</td>
</tr>
<tr>
<td>Marko Jamšek and Jan Babič</td>
<td></td>
</tr>
<tr>
<td>Development of a Wearable Haptic Feedback System for Limb Movement Symmetry Training</td>
<td>455</td>
</tr>
<tr>
<td>Amre Eizad, Muhammad Raheel Afzal, Hosu Lee, Sung-Ki Lyu, and Jungwon Yoon</td>
<td></td>
</tr>
<tr>
<td>Failure Mode and Effect Analysis (FMEA)-Driven Design of a Planetary Gearbox for Active Wearable Robotics</td>
<td>460</td>
</tr>
<tr>
<td>Pablo López García, Stein Crispel, Tom Verstraten, Elias Saerens, Bryan Convens, Bram Vanderborght, and Dirk Lefeber</td>
<td></td>
</tr>
<tr>
<td>Introducing Series Elastic Links</td>
<td>465</td>
</tr>
<tr>
<td>Andrea Calanca, Luca Bettinelli, Eldison Dimo, Rudy Vicario, Mauro Serpelloni, and Paolo Fiorini</td>
<td></td>
</tr>
<tr>
<td>Polymer Optical Fiber Sensors Approaches for Insole Instrumentation</td>
<td>470</td>
</tr>
<tr>
<td>Arnaldo G. Leal-Junior, Antreas Theodosiou, Anselmo Frizera, Maria F. Domingues, Cátia Leitão, Kyriacos Kalli, Paulo André, Paulo Antunes, Maria José Pontes, and Carlos Marques</td>
<td></td>
</tr>
</tbody>
</table>
Pushing the Limits: A Novel Tape Spring Pushing Mechanism to be Used in a Hand Orthosis 475
Claudia J. W. Haarman, Edsko E. G. Hekman, Hans S. Rietman, and Herman van der Kooij

Design and Preliminary Validation of a Smart Personal Flotation Device ... 480
Julian Fraize, Mirjam Furth, and Damiano Zanotto

Introducing Compound Planetary Gears (C-PGTs): A Compact Way to Achieve High Gear Ratios for Wearable Robots 485
Stein Crispel, Pablo López García, Tom Verstraten, Bryan Convens, Elias Saerens, Bram Vanderborght, and Dirk Lefeber

Model-Based Approach in Developing a Hand Exoskeleton for Children: A Preliminary Study 490
Matteo Bianchi, Nicola Secciani, Alessandro Ridolfi, Federica Vannetti, and Guido Pasquini

Design of Bio-joint Shaped Knee Exoskeleton Assisting for Walking and Sit-to-Stance 495
Mehmet F. Kapci and Ramazan Unal

ANT-M: Design of Passive Lower-Limb Exoskeleton for Weight-Bearing Assistance in Industry 500
Berkay Guncan and Ramazan Unal

Effects of an Inclination-Controlled Active Spinal Exoskeleton on Spinal Compression Forces 505
A. S. Koopman, S. Toxiri, M. P. de Looze, I. Kingma, and J. H. van Dieën

Novel Mechanism of Upper Limb Exoskeleton for Weight Support 510
Daegeun Park, Jesus Ortiz, and Darwin G. Caldwell

Human-Centered Design of an Upper-Limb Exoskeleton for Tedious Maintenance Tasks 515
Andrea Blanco, Jorge A. Díez, David López, José V. García, José M. Catalán, and Nicolás García-Aracil

A Supernumerary Soft Robotic Hand-Arm System for Improving Worker Ergonomics 520
Andrea S. Ciullo, Manuel G. Catalano, Antonio Bicchi, and Arash Ajoudani

An Optimization Approach to Design Control Strategies for Soft Wearable Passive Exoskeletons 525
Andres F. Hidalgo Romero, Eveline Graf, and Eduardo Rocon
Actuator Optimization for a Back-Support Exoskeleton:
The Influence of the Objective Function 530
Tommaso Poliero, Stefano Toxiri, Darwin G. Caldwell, and Jesús Ortiz

Design of Mobile Digit Assistive System (MIDAS): A Passive Hand
Extension Exoskeleton for Post Stroke Rehabilitation 535
Titus S. Hansen, Chris K. Bitikofer, Bahram E. Sobbi, and Joel C. Perry

Author Index ... 541
Wearable Sensors for Robotic Exoskeletons
Position Sensing and Control with FMG Sensors for Exoskeleton Physical Assistance

Muhammad R. U. Islam¹(✉), Kun Xu², and Shaoping Bai¹

¹ Department of Materials and Production, Aalborg University, Aalborg, Denmark
{mraza,shb}@mp.aau.dk
² Robotics Institute, Beihang University, Beijing, China
xk007@buaa.edu.cn

Abstract. Human intention decoding is a primary requirement to control an exoskeleton. In this work, a new method of decoding human intention by Forcemyography (FMG) is explored to estimate elbow joint angle during arm motion. The method utilizes an FSR-based sensor band to read muscle contraction and relaxation. The readings of the sensor band are mapped to the desired joint angle by using coarse Gaussian support vector machine (SVM) regression algorithm. The estimated joint angle is further used to control an elbow joint exoskeleton. Results show that the new method is able to estimate reliably the joint angle for controlling the exoskeleton.

1 Introduction

Robotic exoskeletons have strong potential of use as assistive devices to assist the elderly and workers [1] and therefore effective methods of estimating human intention are needed for the assistance control. In the context of cognitive human robot interaction several solutions have been proposed using EEG [2], EMG [3] and FMG [4]. Among these methods, FMG has gained more interest due to its non-invasive nature and simple mechanical and electronic interface, and a good performance as well [5].

Intention detection by FMG is mostly implemented by FSR sensors. The sensors can be embedded inside a strap to detect muscle contraction and relaxation and interpret different movements. In the reported works, FMG has been used to classify forearm [4, 6] and ankle muscle activities [7], but not the upper arm muscle activities.

In this work, FMG is used to estimate the elbow joint rotation angle, which is achieved by detecting muscle activity of upper arm muscles and using SVM regression algorithm to interpret the readings. The developed method is able to detect small changes in joint angle, hence, increasing the reachable space. Moreover, the FMG sensor can also measure simultaneously the muscle strength/effort, which is not possible in other sensors like accelerometers and rotational sensors. In our previous work, the determination of motion type has been reported in [6]. In this paper, we have focused on the joint angle estimation and its application in the control of the exoskeleton motion.

2 FMG Sensor

It is known that the elbow joint motion is primarily governed by biceps and triceps. The contraction and relaxation of muscles cause the muscle shape and hardness to change. It is observed through experiments that due to muscle shape change, the perimeter of upper arm at the middle point increases during flexion and decreases during extension. Moreover, the change is associated to joint angle.

The change in muscle volume can be detected through an FSR based sensor band (S-Band). The S-Band is designed and constructed using an array of three FSRs placed inside a flexible strap and worn on the upper arm as shown in Fig. 1a. As the muscle contracts, the shape and hardness change of muscle will cause an outward normal force on S-Band. This change in normal force can be registered in relation to the arm bending angle. Therefore, with further post-processing, the force read by S-Band can be inferred in terms of joint angle.

![Fig. 1. (a) S-Band design and placement (b) placement of E-EXO on human arm](image)

3 Elbow Exoskeleton Design

An elbow joint exoskeleton (E-EXO) is developed as shown in Fig. 1b. The E-EXO has a range of motion of 0°–130°. The motor has its built-in Hall sensors and an incremental encoder. An absolute encoder is integrated separately to get the actual joint angle of E-EXO.

4 SVM Implementation

The forces read by S-Band are interpreted as joint angle using SVM regression algorithm with 5-fold cross-validation framework. The details on hardware setup to collect data for training session, protocol followed for collecting data and testing are given in forthcoming sections.

4.1 Hardware Setup

The hardware is comprised of S-Band and an accelerometer ADXL-335. This accelerometer is able to measure accelerations ($\pm 3g$) in three axes. By wearing the accelerometer on the wrist, it is calibrated to provide the elbow joint angle.
All the data including FSR’s force readings and acceleration read through Arduino Due is transmitted to the MATLAB based GUI through serial port.

During experiments, subjects were instructed to keep shoulder and wrist in neutral position. Training data was collected by keeping static pose of forearm at five different joint angles for once and each position was maintained for 5s. Subject started from a joint angle near 0° and ended up near 110°, while the actual value of joint angle was computed through the accelerometer.

4.2 Real-Time Estimation

In the real-time joint angle estimation, subject performed two tasks i.e. keeping static pose at two random elbow joint angles and flexion of arm from neutral position.

5 Experiments and Results

5.1 Joint Angle Estimation

Four subjects were recruited for the experiments of real-time estimation of joint angle with the developed method. The results are provided in Table 1.

<table>
<thead>
<tr>
<th>Participants/Tasks</th>
<th>Holding position</th>
<th>Flexion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position 1</td>
<td>Position 2</td>
</tr>
<tr>
<td>Subject 1</td>
<td>9.8°</td>
<td>7.12°</td>
</tr>
<tr>
<td>Subject 2</td>
<td>2.59°</td>
<td>6.52°</td>
</tr>
<tr>
<td>Subject 3</td>
<td>4.32°</td>
<td>6.81°</td>
</tr>
<tr>
<td>Subject 4</td>
<td>7.23°</td>
<td>6.76°</td>
</tr>
</tbody>
</table>

A maximum of 9.8° mean error was recorded for holding position, which is not too significant, as the absolute precision is not required. In the task of flexion, it can be seen that measurements on three out of four subjects have shown error within 10°. The measurement with one subject showed a high error of 19.8°. This can be resulted because the model was trained for constant positions, not for dynamic movements. In addition, the muscle contraction profiles are different for static pose and dynamic movements. Figure 2 shows the results for the joint angle estimation tasks performed by Subject 4.

5.2 E-EXO Control

A bilateral rehabilitation exercise was performed to control the E-EXO in real-time. S-Band was worn on right arm and E-EXO was worn by the other person on same arm. The desired joint angle estimated in MATLAB was transmitted back to Arduino Due control unit, where the control system generates the corresponding desired joint
velocity signal, which is controlled through ESCON’s (motor driver) built-in PI velocity controller. The control loop, shown in Fig. 3, is run on 50 Hz frequency. The position tracking result is shown in Fig. 4. It can be seen in Fig. 4 that the exoskeleton is able to track the desired trajectory and is also not sensitive to chattering/noise, which can cause discomfort to the subject.

Fig. 2. Joint angle estimation

Fig. 3. E-EXO control structure

Fig. 4. E-EXO position control results using estimated joint angle

6 Conclusion

This work presents FMG based position sensing and control method. The developed sensor, S-Band, is able to read the muscle volume change with acceptable performance and therefore has proven to be effective to estimate the elbow joint angle. The proposed
method finds it application in classifying and estimating forearm, wrist and lower limb motions for rehabilitation and assistance purposes. In future, the work will be focused on improving the design and integrating the sensor within the exoskeleton, to use the same control strategy for assistance in daily routine tasks.

Acknowledgment. The reported work is partially supported by EU-AAL Joint Programme through project AXO-SUIT and Innovation Fund Denmark through project EXO-AIDER.

References

Force Localization Estimation
Using a Designed Soft Tactile Sensor

Merve Acer and Adnan Furkan Yıldız

Mechanical Engineering Department, İstanbul Technical University, İstanbul, Turkey
{acerm, yildizadn}@itu.edu.tr

Abstract. Wearable tactile sensors are significant in biomedical robotic applications where force feedback is important. In this work, a soft tactile sensor is proposed for force localization. The tactile sensor was manufactured by using layer-by-layer technique that enables flexibility. The sensor has 9 lead zirconate titanate (PZT) elements placed in 3×3 matrix form which are 4×4 mm² and the spatial resolution is 3 mm. The voltage values gathered from the sensor were conditioned by a charge amplifier circuit. A human inspired machine learning procedure called Neural Networks was used for force localization. The success rates with respect to different network structures were presented and the maximum success was realized as 80.71%.

1 Introduction

Nowadays the robotic research focuses on building systems that can interact with the environment effectively and safely. In the future, the robotic systems will not only be tasked in the known, safe spaces but also collaborate with humans and even worn by the humans to perform more complicated tasks in unknown spaces. However, the physical and functional properties of the robots are limited by their actuator, sensor components and by their physical architecture. We need to find new methodologies for building soft, embeddable/wearable sensors that enable more functions. Besides, we also need to find algorithms to use the developed sensors effectively and make the system smarter.

Tactile sense is an important and developed sense which can provide more information about the unstructured environment than vision especially in terms of force feedback [1]. If tactile sensors can be developed as smart sensitive skins with the requirements of biomedical applications [1, 2] then the technology will also be developed and provide new solutions. This paper presents a wearable, soft 3×3 PZT based tactile sensor with a sensitivity of 0.578–0.821 V/N for force localization using Neural Networks (Fig. 1). The sensor description and data acquisition, the test setup, and the neural network structures for the force localization from the provided signals has been explained and finally the results have been investigated.

This project is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number: 215E139.

© Springer Nature Switzerland AG 2019
M. C. Carrozza et al. (Eds.): WeRob 2018, BIOSYSROB 22, pp. 8–12, 2019.
https://doi.org/10.1007/978-3-030-01887-0_2
2 Sensor Description and Test Setup

The tactile sensor is composed of 9 PZT (PSI-5H4E) elements positioned as a 3×3 matrix form and 5 layers as shown in Fig. 2. The gap between PZT taxels is 3 mm and each PZT ceramic has an area of 4×4 mm2. Two copper-kapton (Pyralux) electrodes which were cut using laser cutter have been used for the top and bottom electrodes of the PZT elements. In an attempt to have a human skin-like tissue on the sensor and to protect the PZT elements from the force impacts, upper and lower parts of the sensor were covered with a thin silicone (Ecoflex30). The detailed manufacturing process for 3×1 sensor array were presented in [3].

Fig. 2. (a) Layer by layer illustration of 3×3 matrix formed PZT based tactile sensor. (b) The manufactured tactile sensor.

High input impedance characteristic of piezoelectric material requires an operational amplifier based signal conditioning unit. A charge amplifier circuit [4] has been selected as the signal conditioner for our system due to the fact that the effect of cable impedance can significantly be reduced in measurements. The resistance and the capacitance values were selected with regard to the level of gain and the cut-off frequency of the amplifier. The force inputs to the tactile sensor were provided by a
direct drive linear actuator mounted on the linear stage of z axis (Fig. 3a). National Instruments 9264 DAQ was used for signal generation of the actuation which is a 10 Hz sine wave and the PZT taxels voltage output values were collected. The peaks of the voltage values were measured via a peak detector block in LabVIEW. These voltage peak values were then used for the training and validation processes of machine learning algorithm. The applied forces on the sensor were also measured by HBM U9C 50N load cell.

3 Force Localization Estimation

3.1 Data Gathering

The force localization is possible continuously on the sensor although we have discrete elements (Fig. 3c). For the 1st row of the sensor, starting from the PZT 1 to PZT 3, 1N of force was applied on every 1 mm and the peak-to-peak output voltages from the PZT elements are collected. Data acquisition process has been done for 14 x 14 mm² with 1 mm sensitivity starting from (0, 0) to (14, 14) and therefore there are totally 225 data points on the sensor used for training (Fig. 3b). Moreover, the validation data includes 196 data points which are shifted from training points by 0.5 mm starting from (0, 0.5) till (13, 13.5) with again 1 mm distance between each points are set as validation points.

3.2 Learning Algorithm

The position estimation was made from 0 to 14 mm for two dimensions. Since the position is a continuous data for this range, regression based machine learning algorithms should be used for the predictions. Multi-layer perceptron algorithm was used
for learning procedure. The network comprises several neurons that were connected with each other by weights and it was basically divided into three groups: the input neurons having 9 neurons because of 9 PZT taxels voltage outputs, the output neurons having 2 neurons for the estimation in 2D space and the hidden neurons. The number of the hidden neurons determines the smoothness of the decision boundary. Values of the weights were set by a calculation method called back propagation [5, 6]. There are a number of activation functions that can be used in network architecture [7]. In this study, 3 of these activation functions were implemented to hidden layers one by one without affecting input and output layers to observe the effects of the activation functions on the learning process.

3.3 Estimation Results

In training process, different network combinations were used in order to find the optimal network architecture and the estimations were made using two different group of test data. All the network structures had 2 hidden layers. Moreover, the average accuracy value was composed by the average value of two different test data accuracy values. The network parameters and the estimation results have been presented in Table 1.

<table>
<thead>
<tr>
<th>Hidden neuron number per layer</th>
<th>Used activation functions</th>
<th>Average accuracy [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Log-Sigmoid</td>
<td>78.94</td>
</tr>
<tr>
<td>10</td>
<td>Log-Sigmoid</td>
<td>75.71</td>
</tr>
<tr>
<td>20</td>
<td>Log-Sigmoid</td>
<td>72.73</td>
</tr>
<tr>
<td>3</td>
<td>Tan-Sigmoid</td>
<td>76.29</td>
</tr>
<tr>
<td>10</td>
<td>Tan-Sigmoid</td>
<td>67.20</td>
</tr>
<tr>
<td>20</td>
<td>Tan-Sigmoid</td>
<td>54.12</td>
</tr>
<tr>
<td>3</td>
<td>Rectified linear unit</td>
<td>44.01</td>
</tr>
<tr>
<td>10</td>
<td>Rectified linear unit</td>
<td>80.71</td>
</tr>
<tr>
<td>20</td>
<td>Rectified linear unit</td>
<td>77.36</td>
</tr>
</tbody>
</table>

4 Conclusion

In this paper, an application of force localization estimation using a designed soft PZT based tactile sensor have been illustrated. Force localization estimation was made for 14 × 14 mm² area on the tactile sensor using Artificial Neural Networks with 3 different activation functions. The best accuracy was obtained by using rectified linear unit activation function with 10 neurons for each hidden layer and the average estimation accuracy is 80.71%.
References

EIT-Based Tactile Sensing Patches for Rehabilitation and Human Machine Interaction

Stefania Russo², Nicola Carbonaro¹, and Alessandro Tognetti¹(✉)

¹ Information Engineering Department and the Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
alessandro.tognetti@unipi.it

² Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Process Engineering, Überlandstrasse 133, 8600 Dübendorf, Switzerland

Abstract. We present the development of an innovative stretchable tactile sensor based on electrical impedance tomography (EIT) for applications in wearable robotics and rehabilitation. To extract the tactile information we exploit the electrical impedance tomography technique to reconstruct the local conductivity changes of a piezoresistive fabric. The EIT method poses several new challenges in the reconstruction, counterbalanced by the overcoming of many of the drawbacks of the current tactile sensors. Results obtained are preliminary but encouraging and we believe that the combination of the EIT method with advanced machine learning techniques will enable reliable wearable tactile sensing.

1 Introduction

In the fields of neuro- and physical- rehabilitation and human machine interaction (HMI), there is a strong need for unobtrusive and conformable sensing devices that do not interfere with the subject’s body and/or the robot’s mechanics. Flexibility and stretchability of the sensing elements are the key factors to achieve effective and reliable wearable human-robot interfaces able to detect user movements, recognise movement intention and sense tactile interaction. We have previously developed flexible and stretchable sensing interfaces able to detect human posture and movement based on textile strain sensors and goniometers. Textile goniometers are double layer piezoresistive device that can reliably sense the joint angle of rotational joints [1]. They have been combined and fused with inertial microsensors to reconstruct the movement of upper [2] and lower limbs [3] with applications in neuro- [4] and physical- [5] rehabilitation and HMI [6]. To obtain fully functional wearable robotic interfaces, the capability to detect kinematic information has to be augmented with the tactile sensing modality (i.e. detection of normal/shear force and stimulus location), again in a flexible,
stretchable and conformable fashion. To detect the force interaction in multiple points between the subject and the robotic interface has many applications, spanning from prosthesis control [7], movement intention recognition in exoskeletons [8], to assessment of rehabilitation recovery [9].

In the present work we present the preliminary development of an innovative tactile sensor based on electrical impedance tomography (EIT). Our sensor is simply made of a piezoresistive fabric, where the local conductivity changes due to the applied mechanical stimuli. The change in conductivity is reconstructed thanks to the solution of the EIT inverse problem where current injection and voltage reading electrodes are placed only at the boundary of the sensing area. This approach overcomes several drawbacks intrinsically linked to distributed tactile sensing (no wires on the sensing area, conformability, possibility to adapt to irregular surfaces), even if it poses several new challenges in the reconstruction of the tactile stimuli.

2 Materials and Methods

The presence of different materials or wires embedded in a tactile sensor is usually one of the main cause in the reduction of their flexibility and/or stretchability. An approach that has been recently used to compensate for this drawback, which is the main topic of this work, is EIT [10]. This technique allows to place the electrodes only on the boundary of the active sensing area of a tactile sensor. As a consequence, no wiring is present inside the sensor. Therefore, EIT-based sensors can be placed over different surfaces even with irregular shapes as typically occur in the human robot interaction scenarios we are considering. EIT techniques are ill-posed non linear inverse problems, where the aim is to reconstruct the conductivity distribution of the body under study from measurements taken at electrodes placed the boundary. The reconstructed conductivity is then showed in an image by applying an inverse reconstruction algorithm [11].

A typical EIT system consists of a current source, a switching mechanism for generating current injection patterns between the boundary electrodes and a data acquisition unit for potential measurements [12]. In order to address some of the necessary requirements for rehabilitation and human robot interaction applications, we have developed an EIT system which presents low power consumption, precision in the measurements and high temporal resolution. A block diagram of our EIT platform is shown in Fig. 1 and consists of 3 main elements which are described below.

The transducer element is represented by block 3. We have used a thin, stretchable, piezoresistive fabric material provided by Eeonyx. The material has a surface resistance of 30 KΩ, it is low-cost, light weight, very flexible, bendable and conformable to different surfaces. For validation purposes we have used a 3D-printed circular frame made out of two disc layers to house the conductive sheet. The frame presents 16 extrusions where conductive copper stripes are placed to create the electrodes. A custom printed circuit board (PCB) illustrated by block 2 along with its simple schematic in Fig. 1, is used for performing a DC constant