Energy, Climate and the Environment

Series Editors
David Elliott
The Open University
Milton Keynes, UK

Geoffrey Wood
School of Law
University of Stirling
Stirling, UK
The aim of this series is to provide texts which lay out the technical, environmental and political issues relating to proposed policies for responding to climate change. The focus is not primarily on the science of climate change, or on the technological detail, although there will be accounts of this, to aid assessment of the viability of various options. However, the main focus is the policy conflicts over which strategy to pursue. The series adopts a critical approach and attempts to identify flaws in emerging policies, propositions and assertions. In particular, it seeks to illuminate counter-intuitive assessments, conclusions and new perspectives. The intention is not simply to map the debates, but to explore their structure, their underlying assumptions and their limitations. The books in this series are incisive and authoritative sources of critical analysis and commentary, clearly indicating the divergent views that have emerged whilst also identifying the shortcomings of such views. The series does not simply provide an overview, but also offers policy prescriptions.

More information about this series at
http://www.palgrave.com/gp/series/14966
Vehicle-to-Grid
A Sociotechnical Transition Beyond Electric Mobility
Acknowledgements

The authors are appreciative to the Research Councils United Kingdom (RCUK) Energy Program Grant EP/K011790/1 “Center on Innovation and Energy Demand,” the Danish Council for Independent Research (DFF) Sapere Aude Grant 4182-00033B “Societal Implications of a Vehicle-to-Grid Transition in Northern Europe,” which have supported elements of the work reported here. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of RCUK Energy Program or the DFF. We also thank Dr. Xiao Lin for her assistance in collecting some of the primary data for this book, as well as Prof. Willett Kempton and Assoc. Prof. John Axsen for helping refine our thoughts on the topic.
This book defines and charts the barriers and future of an emerging low-carbon source of mobility that could dramatically reduce emissions, create revenue, and accelerate the adoption of battery electric cars: vehicle-to-grid technology. This technology connects the electric power grid and the transportation system in ways that will enable electric vehicles to store renewable energy and offer valuable services to transmission operators. To understand the complex features of this emergent technology, this book explores the current status and prospect of vehicle-to-grid and then individually details the sociotechnical barriers that may impede its fruitful deployment. Finally, the book concludes with a policy roadmap to advise decision-makers on how to optimally implement vehicle-to-grid and capture its benefits to society while attempting to avoid the impediments discussed earlier in the book.

This combines the most up-to-date literature on vehicle-to-grid, mobility, transitions, sociotechnical systems, and electric power systems along with original data collected by the authors on the array of challenges and benefits to vehicle-to-grid. The examples in the book cut across technical integration of research, economic analyses, and sociopolitical challenges based on novel mixed methods (quantitative and
 qualitative). Thus, the book will ensure that readers from a variety of backgrounds will gain a more comprehensive understanding of vehicle-to-grid and its potential for wide-scale implementation in the transport and electric systems.
1 History, Definition, and Status of V2G
 1.1 Defining V2G
 1.1.1 Incorporating V2G to the EV
 1.1.2 Aggregation
 1.1.3 Auditing and Metering
 1.1.4 V2G in Practice
 1.2 V2G, Power Markets and Applications
 1.2.1 Electricity Markets and V2G Suitability
 1.2.2 Long-Term Storage, Renewable Energy, and Other Grid Applications
 1.2.3 Beyond the Grid: Other Concepts Related to V2G
 1.3 History and Development of EVs and V2G
 1.4 Actors and Roles of V2G
 1.4.1 Primary Actors: EV Owners, Aggregators, and the Electricity Grid
 1.4.2 Secondary Actors: Government, the EV Industry, and Electricity Producers
Contents

1.5 Conclusion ... 25
References ... 26

2 The Potential Benefits of V2G 33
2.1 Summarizing the Benefits of V2G 33
 2.1.1 Technical Benefits: Storage Superiority and Grid Efficiency 36
 2.1.2 Economic Benefits: EV Owners and Societal Savings 38
 2.1.3 Environment and Health Benefits: Sustainability in Electricity and Transport 43
 2.1.4 Other Benefits and Perceived Benefits 51
2.2 Benefits in Motion: From Fleets to Individuals and Beyond 53
2.3 V2G and the Grid 55
2.4 Conclusion ... 58
References ... 59

3 The Technical Challenges to V2G 65
3.1 Battery Degradation 66
3.2 Charger Efficiency 72
3.3 Aggregation and Communication 75
 3.3.1 Aggregation and Scaling 75
 3.3.2 Communication Standards 78
3.4 V2G in a Digital Society 81
3.5 Conclusion ... 84
References ... 85

4 The Economic and Business Challenges to V2G 91
4.1 Evaluating V2G Costs and Revenues 92
 4.1.1 EV Costs and Benefits 92
 4.1.2 Adding V2G Costs and Benefits 94
 4.1.3 Additional V2G Costs 97
 4.1.4 The Evolving Nature of V2G Costs and Benefits 100
4.2 V2G Business Models
4.2.1 Pricing and Revenue Models
4.2.2 Ownership Structure: Aggregators and Other Actors
4.2.3 Defining the Evolving Market: Integration with Other Technologies
4.3 Conclusion
References

5 The Regulatory and Political Challenges to V2G
5.1 V2G and Regulatory Frameworks
5.1.1 Regulating V2G and Energy Storage
5.1.2 Ownership of V2G and Energy Storage
5.2 Market Design Challenges
5.2.1 Proper Valuation of Ancillary Services
5.2.2 Double Taxation, Curtailment and Capacity Markets
5.2.3 Clarifying Aggregator Roles and Responsibilities
5.3 Other V2G Regulatory and Legal Challenges
5.4 Political Challenges of V2G
5.4.1 Broader Policy Coordination and Political Will
5.4.2 Specific V2G Policies
5.5 Conclusion
References

6 Consumers, Society and V2G
6.1 Consumer Perspectives of V2G
6.1.1 Ambivalence and Low Consumer Awareness
6.1.2 Intermediaries and V2G Diffusion
6.2 Conceptualizing the Consumer in a V2G System
6.2.1 Diffusion of Innovation
6.2.2 Social Construction of Technology
6.2.3 The Multi-level Perspective User-Typology
6.3 Increasing Consumer Knowledge and Acceptance
6.3.1 User Innovation and Tinkering
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2 Accruing User Experience and Involvement</td>
<td>156</td>
</tr>
<tr>
<td>6.3.3 Targeted Information Campaigns</td>
<td>156</td>
</tr>
<tr>
<td>6.3.4 Involving Users in Pilot Projects</td>
<td>158</td>
</tr>
<tr>
<td>6.3.5 Promoting V2G as a Conspicuous Good</td>
<td>159</td>
</tr>
<tr>
<td>6.4 Conclusion</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>163</td>
</tr>
<tr>
<td>7 V2G Deployment Pathways and Policy Recommendations</td>
<td>167</td>
</tr>
<tr>
<td>7.1 Synthesizing Barriers Across Actors</td>
<td>168</td>
</tr>
<tr>
<td>7.2 Toward a Stylized V2G Policy Mix</td>
<td>172</td>
</tr>
<tr>
<td>7.3 Five Global Development Pathways and V2G Futures</td>
<td>178</td>
</tr>
<tr>
<td>7.3.1 Conservative Backlash</td>
<td>181</td>
</tr>
<tr>
<td>7.3.2 V2G Remains a Niche</td>
<td>183</td>
</tr>
<tr>
<td>7.3.3 High V2G, Dirty Grid</td>
<td>185</td>
</tr>
<tr>
<td>7.3.4 High V2G, Renewables in a Traditional but Decarbonized Grid</td>
<td>186</td>
</tr>
<tr>
<td>7.3.5 The Super-Smart Grid</td>
<td>187</td>
</tr>
<tr>
<td>7.4 Conclusion</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
<tr>
<td>8 Realizing and Problematizing a V2G Future</td>
<td>191</td>
</tr>
<tr>
<td>8.1 Key Themes and Current Expert Perspectives: Benefits, Barriers, and Policies</td>
<td>192</td>
</tr>
<tr>
<td>8.1.1 Compelling Potential Benefits</td>
<td>192</td>
</tr>
<tr>
<td>8.1.2 Sobering Barriers and Challenges</td>
<td>195</td>
</tr>
<tr>
<td>8.1.3 Calibrating Policy Mixes</td>
<td>199</td>
</tr>
<tr>
<td>8.2 Problematizing V2G in the Context of Energy Transitions</td>
<td>203</td>
</tr>
<tr>
<td>8.2.1 Elitism and Inequitable Access</td>
<td>203</td>
</tr>
<tr>
<td>8.2.2 Loss of Privacy and Cybersecurity</td>
<td>206</td>
</tr>
<tr>
<td>8.2.3 Affirming Conventional Automobility</td>
<td>208</td>
</tr>
<tr>
<td>8.2.4 Vulnerable Groups and Pollution</td>
<td>209</td>
</tr>
<tr>
<td>8.2.5 Toward a Just and Sustainable V2G Policy</td>
<td>210</td>
</tr>
</tbody>
</table>
8.3 Thematic Social Research Gaps 212
 8.3.1 Carbon and Health Impacts of V2G 212
 8.3.2 User Behavior 214
 8.3.3 Visions and Narratives 216
 8.3.4 Social Justice 220
 8.3.5 Gender Norms 221
 8.3.6 Urban Resilience, Disasters, and Emergency Capacity 222

8.4 Methodological Research Gaps 223
 8.4.1 Broadening the Set of V2G “Cases” 223
 8.4.2 Overcoming Transformative Failures 224
 8.4.3 Toward Interdisciplinary, Multi-method Approaches 225

8.5 Conclusion 228
References 230

Index 235
About the Authors

Dr. Lance Noel is a Postdoctoral Researcher at Aarhus University, where he is a lead researcher on a $1.6-million grant on the sociotechnical benefits and barriers of electric vehicles and vehicle-to-grid in the Nordic region (NV2G). This research includes five methods across the five Nordic countries, including expert interviews, surveys, focus groups, and choice experiments. He received his Ph.D. at University of Delaware where his dissertation focused on the economic, political, and legal implications of large-scale renewable energy implementation and vehicle-to-grid technology. Additionally, he participated in the original vehicle-to-grid pilot project at University of Delaware and has published 17 journal articles that focus primarily on vehicle-to-grid and renewable energy integration.

Gerardo Zarazua de Rubens is a Doctoral Fellow at Aarhus University working on the same NV2G grant that explores the social, technical, and economic barriers for electric vehicle and vehicle-to-grid implementation in the Nordic region. His research is focused on energy and climate policy, sustainable development, and economic and managerial science, and also has experience in undertaking a variety of research
methods, from expert interviews, to focus groups and surveys. He has previously worked as a consultant on international electricity markets, and non-traditional business models of energy supply, as well as logistics and operations management. Gerardo received his M.Sc. in sustainable development from the University of St Andrews, Scotland, in 2014. He is currently leading and co-authoring 10 journal articles focused on electric mobility, power systems, and energy justice.

Dr. Benjamin K. Sovacool is the Principle Investigator of the NV2G project. He is Professor of Energy Policy at the Science Policy Research Unit (SPRU) at the School of Business, Management, and Economics, part of the University of Sussex in the UK. He is also Professor of Business & Social Sciences and Director of the Center for Energy Technologies at Aarhus University in Denmark, as well as Visiting Professor at the Institute of Energy Policy and Research (IEPRe), Universiti Tenaga Nasional, Malaysia. Professor Sovacool works as a researcher and consultant on issues pertaining to energy policy, energy security, climate change mitigation, and climate change adaptation. Professor Sovacool is the author of more than 400 refereed articles, book chapters, and reports, including solely authored pieces in Nature and Science. He is the author, coauthor, editor, or co-editor of 20 books, including Climate Change and Global Energy Security (MIT Press), Energy Poverty (Oxford University Press), Global Energy Justice (Cambridge University Press), The Political Economy of Climate Change Adaptation (Nature Publishing Group/Palgrave), Fact and Fiction in Global Energy Policy (Johns Hopkins University Press), and Enabling the Great Energy Transition (Columbia University Press). US President
Bill Clinton, the Prime Minister of Norway Gro Harlem Brundtland, and the late Nobel Laureate Elinor Ostrom have endorsed his books. Additionally, Prof. Sovacool is the founding Editor-in-Chief for the international peer-reviewed journal *Energy Research & Social Science*, published by Elsevier, and he sits on the Editorial Advisory Panel of *Nature Energy*.
List of Figures

Fig. 1.1 Common schematic of a V2G System. Note ISO stands for Independent System Operator. The figure shows two potential means of dispatching V2G requests: from the ISO directly to a vehicle (shown in the upper right-hand corner), or from the ISO to a third-party aggregator of a fleet (shown in bottom right-hand corner)

Fig. 1.2 Example communication diagram of a V2G System. The black line represents communication flows, whereas the red line represents bidirectional power flows

Fig. 1.3 Example of example metered data providing reliability of grid services over five minutes. The blue line (Request) is the amount of energy requested from the electricity grid operator, while the red line (Response) is the energy provided by the EV. Average time delay is between 1 and 3 seconds

Fig. 1.4 Example electricity markets and their suitability for V2G

Fig. 1.5 Diagram of actors in a hypothetical V2G system. Note that some of the communication and power flows may differ depending on V2G service provided
Fig. 2.1 Revenues over a 16-year period providing frequency regulation in US electricity grid regions. ISO-NE ISO-New England, NYISO New York ISO, ERCOT Electricity Reliability Council of Texas, CAISO California ISO

Fig. 2.2 Estimated annual CO₂ emissions avoided by V2G per electricity region, assuming 1% of EVs are V2G-capable

Fig. 2.3 Three scenarios of storage with large-scale renewable energy in the PJM interconnection. Left column: hydrogen storage, center: centralized batteries, right: V2G

Fig. 2.4 Renewable energy curtailed, based on percent penetration and level of grid flexibility

Fig. 2.5 Research focus (a) and Expert opinion (b) of Benefits of V2G systems

Fig. 2.6 Supergrid with high levels of renewable energy and a HVDC network

Fig. 3.1 Estimated battery capacity loss over time for EVs (no V2G included). Note that the difference between different levels of charging, as shown in the legend in the upper left corner, makes no discernable difference on the difference on capacity loss

Fig. 3.2 Battery degradation per cycle (N) as a function of temperature and depth of discharge (DOD)

Fig. 3.3 Average battery capacity losses over 10 years with V2G services, providing three different services (peak shaving, frequency regulation, net load shaping) in two usage scenarios (everyday for 10 years and 20 times per year)

Fig. 4.1 Potential V2G revenue, pricing, and power flow models

Fig. 5.1 Influence of fees and taxation on V2G operation. Note: Graph represents Nuvve’s June 2017 settlement bills from NEAS Energy (their BPR), indicating how much of the bought electricity is used for driving and how much for grid operations as well as the distribution of taxes, tariffs, and fees

Fig. 6.1 Classic U-shaped diffusion of innovations curve

Fig. 6.2 The MLP with description of user typologies
Fig. 8.1 The diverse array of 25 V2G benefits identified by expert interviews 193
Fig. 8.2 Dendrogram of top 9 most common barriers to V2G. Note Organized by Jaccard's coefficient of similarity, colors denote cluster groupings (Italics represent Percent of Respondents Discussing Barrier) 196
Fig. 8.3 Recent publishing trends in V2G research, January 2015–April 2017. Note n = 197 peer-reviewed articles 213
List of Tables

Table 1.1 Defining the different conceptualizations of use cases of a bidirectional vehicle 16
Table 2.1 Technical attributes of various storage technologies, using the USA as an example. Ranges indicate difference in cost depending on technology or system used 35
Table 3.1 Percentage energy loss per stage in the V2G system for charging and discharging at two different current levels 73
Table 3.2 Differences between the three V2G standards 79
Table 3.3 Potential security risks in a smart grid/V2G system 83
Table 6.1 Summary of various theories on the implications of users in a V2G system 147
Table 7.1 Impacts and roles of actors in across sociotechnical barriers 169
Table 7.2 Policy solutions aligned to address sociotechnical barriers 174
Table 7.3 Five imagined V2G futures and their characteristics 180
Table 8.1 Summary of V2G policy suggestions and our reflection 200
Table 8.2 The interactive and potential positive and negative impacts of a V2G transition 204
Table 8.3 Policy mechanisms to minimize problematic V2G pathways 211
Table 8.4 Functional-symbolic and private-societal dimension of driver behavior 215
Table 8.5 Summary of visions, promises, and ideographs of EVs and V2G in the Nordics 217
Table 8.6 Illustrative summary and comparison of V2G model qualities 226
Vehicle-to-grid, often shortened to V2G, was first introduced as a concept near the turn of the twenty-first century to capitalize on the assumption that electric vehicles (EVs) would widely diffuse in society, and thus, there would be a large amount of electric power capacity that could provide valuable storage services to electricity grids [1]. Since its introduction, many have elaborated on the potential benefits of V2G, detailing the large amounts of power capacity, various electricity grid services, and economic revenues potentially available to EV owners [2, 3]. Given the disappointingly slow diffusion of EVs, V2G may prove useful to accelerate the adoption of EVs [4, 5]. While providing ancillary services for the grid, namely frequency regulation, and EV owner economic benefits are the most immediate benefits of V2G, the future benefits of V2G such as integrating renewable energy are also tantalizing. Indeed, a variety of papers have found that V2G can provide low-cost storage to integrate large-scale renewable electricity [6–8]), helping tackle the looming challenge of climate change as well as public health emissions from electricity and transportation sources.

Consequently, there has been increasing interest in the concept among industry and scholars, which has resulted in a variety of novel
potential solutions within electricity grids and transportation. In a recent literature review [9], the authors found around 200 articles published on V2G, covering a wide variety of concepts, including, but not limited to renewable energy integration, ancillary services, local grid solutions, microgrids, and buildings (see more about these research gaps in Chapter 8, the Conclusion). While the academic focus on V2G has continued to accelerate, the diffusion of the actual use of V2G has been more staggered historically, with current projects limited to only a few pilot projects within fleets around the world [9]. Nonetheless, these pilot projects are entering commercial operations, and there has been recent activity in project development, for example, with the UK government investing £30 million in projects focused on V2G in 2018 [10]. Even the Pope has supported and adopted EVs, which also included a project involving V2G [11].

Indeed, the future of V2G looks bright, with some scholars predicting that V2G will be an essential form of storage for the electricity grid of the future. For example, it has been predicted that there will be massive increases in V2G capacity in the coming decades, as shown in Fig. 1 [12], where it becomes a dominant technology in the power system. For this reason, and with the potential to decarbonize the electricity and transport

![Fig. 1 Installed capacity (left) and utilization per hour (right) during operation of a European grid optimized for different energy storage technologies, 2000–2100. CAES compressed air energy storage (Reprinted from [12])](image-url)
sectors and drive EV adoption, the future of V2G is enticing to many actors. Specifically, experts envision V2G as a means to reach a future where there is a synergy between electricity and EVs, thereby feeding into imaginaries of synergy and seamless interconnectivity, as well of autonomy and self-determination [13]. While V2G exists today mostly in fleet pilot projects, its potential future is far-reaching and substantial, particularly when tapping into personal vehicles, public transportation, and perhaps more.

Thus, it is conceivable that in the future, V2G capability will become the norm (or at least in some markets and regions) and will be available in a variety of vehicles, becoming a part of everyday life in society. Despite the possible pervasiveness and benefits of V2G, outside of academia (and even within it), current knowledge and understanding of V2G are relatively low. In a recent survey conducted by the authors in the Nordic region, fewer than 10% of the respondents had ever heard of V2G before taking the survey [14, 15]. At the same time, academic knowledge of V2G is highly specialized, with most of the research effort taking place in highly technical fields within science and engineering [9], such as control charging optimization algorithms, renewable energy integration, and battery degradation.

Specialized knowledge alone, however, does not lead to broad diffusion of a new technology. It is well established in the innovation and transition literatures that for a technology to diffuse, knowledge about its benefits, use, and potential must be dispersed across a wider variety of actors than is currently the case for V2G [16]. Looking beyond academics and consumers, there will be an increasing number of other actors who will play an essential role in the diffusion of V2G, such as local and national policymakers, marketers, energy sector practitioners, fleet operators, or parking organizations, among various others. Therefore, for these actors, a basic understanding of V2G is essential.

For these reasons, we set out to write this extensive, comprehensive, and easily accessible reference on V2G. The book is aimed toward a wide audience including academics at the periphery of V2G, consumers interested in the technology that comes in their EV, policymakers who want to understand the technology to implement policies, and industry practitioners to understand the technology that may have
been recently implemented in their local grid. As the only other broad introduction to V2G is almost 10 years old [17], this book offers an up-to-date and more extensive introduction to a fast-moving technology that has changed substantially over the last 10 years. Moreover, to underscore the role played by the numerous sectors and actors in the complex sociotechnical system that V2G is interacting, we believe it is of the utmost importance to give a more comprehensive perspective of V2G. Consequently, as you make your way through the book, we will aim to provide the history and context of V2G, its potential future in better detail, and the challenges it may face from the variety of relevant perspectives. As the first chapters will extensively discuss the conceptualization and background of V2G, this introduction will introduce our approach to V2G, offer a brief introduction to the chapters, and describe the data, method, and theories that are used.

Approach: V2G as a “Niche” in a “Sociotechnical System”

To help understand the promise and challenges of V2G, the book largely views the related transport and electricity infrastructure connected to V2G as a “sociotechnical system”—looking at more than just the technical aspects of V2G to how it is part of and influences society.

The term sociotechnical system finds its origin rooted in multiple disciplines and approaches. One of the best known is Thomas Hughes’s work on the history of the electric utility system, wherein he argues that the generation, transmission, and distribution of electricity occurs within a technological system that extends beyond the engineering realm [18]. Such a system is understood to include a “seamless web” of considerations that can be categorized as technical, economic or financial, political, environmental, and social, making it “sociotechnical.” Large modern systems integrate these elements into one piece, with system builders striving to “construct or … force unity from diversity, centralization in the face of pluralism, and coherence from chaos” [19]. If the managers succeed, the system expands and thrives while,
simultaneously, closing itself (both its meaning and set of relationships) for disruption, resistance, and change. In other words, the influence of the outside environment on a sociotechnical system may gradually recede as the system expands its reach to encompass factors that might otherwise alter it.

In other words, the concept of a sociotechnical system helps reveal that technologies, such as electricity grids and V2G, must be understood in their societal context and that the different values expressed by inventors, producers, managers, regulators, and consumers shape technological change all in their own way. System builders, it follows, must overcome a complex milieu of sociotechnical obstacles to reap benefits. A salient insight from the sociotechnical approach is its focuses on the interrelationship of linkages between elements and co-evolutionary processes, e.g., that a system never stands on its own but is nested in other equally complex sociotechnical systems. Figure 2 offers an illustration of the sociotechnical system that surrounds modern, conventional, car-based land transport [20].

The book takes a sociotechnical approach, as such an analytical framework encourages scholars to look beyond single dimensions without
losing the complexity of the system and doing injustice to the many interactions and relationships that shape it. Specifically, we investigate V2G across the various sociotechnical categories summarized in Table 1. These include, first, the technical or technological elements such as batteries and charging infrastructure, tires on vehicles, and interconnections to the electricity grid. Next are the financial or economic elements that encompass the cost of the technology as well as the availability of fuel and any affiliated cost savings and revenues that can be generated. A third category is socioenvironmental, and how the technology relates to the overall benefits (or costs) to society. A final category focuses on the individual behavior of consumers and users, namely the owners and operators of EVs that might take part in V2G programs. We see each of these dimensions at play in different parts of our chapters.

In laying out the following chapters below, it is not our intent to suppose that demarcations between “technical,” “financial,” “socioenvironmental,” and “behavioral” dimensions really exist in distinct, separate classes. The entire point of the sociotechnical systems approach is that

Table 1 Overview of sociotechnical dimensions of a V2G transition

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Inclusive of</th>
<th>Example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>Technology, infrastructure, and hardware</td>
<td>Vehicle performance, grid interconnection, communication, battery degradation</td>
</tr>
<tr>
<td>Financial</td>
<td>Price signals, economics, regulatory tariffs</td>
<td>Capital cost of V2G charging stations, hardware, batteries and interconnectors, revenues, cost savings, business models</td>
</tr>
<tr>
<td>Socioenvironmental</td>
<td>Broad social costs and benefits</td>
<td>Mitigated greenhouse gas emissions, air pollution, integration with renewable sources of energy, externalities</td>
</tr>
<tr>
<td>Behavioral</td>
<td>Consumer and user perceptions, attitudes, and behavior</td>
<td>Consumer perceptions of all of the above, including benefits, inconvenience, distrust, confusion, range anxiety</td>
</tr>
</tbody>
</table>
such impediments are seamlessly interconnected; dividing the “social” from the “technical,” or even the “economic” from the “environmental” is counterproductive and dangerous, since it misses the point that such factors exist in an interstitial and interdependent network. In other words, it is a heterogeneous combination of sociotechnical factors that determine whether V2G technologies will achieve widespread acceptance or face consumer rejection. Thus, while reading each chapter, the readers are heavily encouraged to consider the seamless connections to other chapters of the book.

Within well-established field of sustainability transitions studies, one particularly strong framework often utilized is that of the multi-level perspective, or MLP [21]. Borrowing from a mix of disciplines, including history, evolutionary economics, institutional theory, and science and technology studies (STS), the approach suggests that diffusion or transitions occur through interactions among three levels: the niche, the regime, and the landscape. The niche refers to a radical innovation that is emerging to gain diffusion or adoption, to move from invention and innovation to viable market introduction [22]. The regime level refers to the incumbent sociotechnical system that the niche is potentially affecting or replacing; such regimes contain cognitive, regulative, and normative institutions [23]. The “landscape” refers to exogenous developments or shocks (e.g., economic crises, demographic changes, wars, ideological change, major environmental disruption like climate change) that create pressures on the regime, which in turn create windows of opportunity for the diffusion of niche-innovations. Figure 3 illustrates how the three scales interact.

A key term of art within the MLP framework is that of a “transition pathway.” Analytically, the claim is that different kinds of interactions among niche, regime, and landscape result in different kinds of alignments. Geels and Schot [24] construct a typology based on combinations between two dimensions: the timing and nature of multi-level interactions. This leads them to distinguish four transition pathways: (1) technological substitution, based on disruptive niche-innovations that are sufficiently developed when landscape pressure occurs, (2) transformation, in which landscape pressures stimulate incumbent actors to gradually adjust the regime, when niche-innovations are not sufficiently developed, (3) reconfiguration, based on symbiotic niche-innovations
that are incorporated into the regime and trigger further (architectural) adjustments under landscape pressure, (4) de-alignment and re-alignment, in which major landscape pressures destabilize the regime when niche-innovations are insufficiently developed; the prolonged co-existence of niche-innovations is followed by re-creation of a new regime around one of them. The core lesson from these four pathways is that transitions can be conflictual—many niches fail—and that existing energy systems and infrastructure can dominate and suppress threatening innovations.

As we will see throughout the book, V2G clearly falls within the “niche” or even “pre-niche” category, meaning it must compete with
these other sources of mobility and electricity grid actors. While these are not the only theories that we will utilize, we urge the readers to consider this framework as we move through the individual sociotechnical barriers, and how these may influence the transition of V2G from a niche to a regime, and perhaps even to the landscape level.

Chapters to Come

The book has eight remaining chapters, each focusing on a different facet of V2G, and thus analyzing different subcomponents of the sociotechnical system. While acknowledging the interconnected nature of the topics discussed in each individual chapter, we endeavor to atomize V2G as a technology into its most basic portions.

First, in Chapter 1, we focus on the history of V2G, to provide context for the remainder of the book. Additionally, given the lack of knowledge and confusion over exactly what V2G is, we will carefully define V2G, what is included in its conceptualization, and what is not V2G, but related to it, defining other concepts, such as vehicle-to-home (V2H), vehicle-to-building (V2B). As V2G takes place in a complex sociotechnical system, this chapter next looks beyond the specifics of the technology and defines the potential actors and their roles in the various V2G set-ups. Finally, we will summarize the current status of V2G around the globe and offer an overview of some of the pilot projects and plans in place.

Next, in Chapter 2, we focus on the benefits and potential of V2G. We start with an exploration and summary of all the potential benefits of V2G, from economic revenues, to grid efficiency, to renewable energy integration, and everything in between. We then place these benefits in the larger transportation and electricity systems, first focusing on how V2G’s current status in fleets can transfer to personal consumers and others. From the other side, we also will detail the interactions of V2G with a quickly changing grid, particularly with the potential advent of smart grids and super grids. Finally, we end the chapter with the conceptualization of the future of V2G.